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Abstract 

Exclusion in the All-Pay Auction: An Experimental Investigation 

by Dietmar Fehr and Julia Schmid* 

Contest designers or managers who want to maximize the overall revenue of a contest 
(relative performance scheme) are frequently concerned with a trade-off between contest 
homogeneity and inclusion of contestants with high valuations. In our experimental study, 
we find that it is not profitable to exclude the most able bidder in favor of greater 
homogeneity among the remaining bidders, even if the theoretical exclusion principle 
predicts otherwise. This is because the strongest bidders are willing to give up a 
substantial part of their expected rent and prefer a strategy that ensures a lower but 
secure pay-off. 
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1 Introduction

Relative performance schemes seem important for fueling the effort and performance of

agents in organizational settings and also in many other domains of our society (see e.g.,

Frank and Cook 1995). For example, firms often install promotion tournaments and sales

competitions, lobbyists compete for influence in the political domain, or researchers com-

pete for research grants. All these examples have in common that rewards are allocated

based on relative rather than absolute performance, that the effort of the losers is lost

and that the contest designer’s main focus is the overall performance of the bidders. The

closeness of competition and thus the composition of contestants is a critical design pa-

rameter for a contest designer, as a too heterogeneous contest may have adverse effects

on agents’ performance.

In recent years many sports, for example, have seen the presence of dominant ath-

letes, such as Roger Federer or Novak Djokovic on the Tennis ATP Tour, or Tiger Woods

on the Golf PGA Tour. These superstars typically create a lot of attention and serve as

the face of their sport. However, too great a dominance by one athlete might also lead to

boredom and a lower level of competition. For example, due to Michael Schumacher’s

dominance in Formula One racing, the viewing figures dropped and, consequently, the

FIA changed several of their rules to make the races more tense (BBC 2002).1,2

These examples vividly illustrate the trade-off between the inclusion of superstars

and contest homogeneity. Baye, Kovenock, and de Vries (1993) provide the theoretical

foundations of this trade-off and show that under specific assumptions the exclusion of

the strongest bidder can lead to higher revenues for the contest designer (exclusion prin-

1Another anecdote recounts that Tiger Woods’ landslide victory at the 1997 Masters in Augusta has led
to deliberations about redesigning the Augusta National.

2Likewise, US professional sport leagues (e.g., the NBA, NFL, NHL or MLB) put a lot of effort into
creating homogeneity among the competing teams. For example, the rookie drafting system tries to ensure
a more balanced competition in the medium to long run by giving the weaker teams from the previous
season the right to have first choice of the rookies from the pool of the best junior prospectives. This is in
contrast to many sport leagues in Europe, for example soccer leagues, which are usually dominated by a
few teams.
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ciple). In contests with one prize, the presence of a strong bidder may decrease the bids

of the weaker bidders, which in turn may also reduce the bid of the strongest bidder.3

As a result this can lead to a lower overall performance. The idea behind the exclusion

principle is to increase the bids of the remaining bidders by creating a smaller but more

homogeneous contest.

This paper presents an experimental test of the exclusion principle. That is, we at-

tempt to answer the question of whether a heterogeneous group with one strong bidder or

a smaller but more homogeneous group maximizes total revenue for the contest designer.

We implement a repeated all-pay auction with three bidders and complete information

about bidders’ valuations of the prize. The valuations in a bidding group are heteroge-

neous, i.e., a group consists of one strong bidder and two weaker bidders. In order to

test the exclusion principle we randomly vary the participation of the strongest bidder in

a bidding group and compare total revenues when there is no exclusion of the strongest

bidder with total revenues in the smaller homogeneous contest where the strongest bid-

der is excluded.

We find little support for the theoretical predictions. In homogeneous contests,

i.e., contests in which the strongest bidder is excluded from participation, we observe

revenues close to the theoretical prediction. However, we find no support for the exclusion

principle as excluding the strongest bidder is, on average, not beneficial for the contest

designer. In fact, revenues are substantially higher in the condition where the strongest

bidder participates than in the condition in which the strongest bidder is excluded. This

is independent of the strength of the strongest bidder. That is, revenues are comparable

in situations where the strongest bidders’ valuation of the prize is almost twice as high

as the valuation of the second-strongest bidder and where it is more than three times

higher. Therefore our findings indicate that in our setting the presence of superstars is

3Using data from the Professional Golf Association (PGA) Tour, Brown (2011) shows that the partic-
ipation of Tiger Woods leads to a worse performance (more strokes) of other participating high-skilled
professionals (but not low-skilled professionals) compared to when Tiger Woods is not participating in the
tournament.
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not detrimental to contest revenues.

The main reason for the failure of the exclusion principle is the behavior of the

strongest bidders as they considerably overbid when they participate in the contest. Al-

though the weaker bidders increase their effort significantly when the strongest bidder

is excluded, they cannot compensate for the lost revenue of the strongest bidder. The

strongest bidders often choose a strategy that guarantees they will win the prize, which

involves bids equal to or higher than the valuation of the second-strongest bidder. In

most cases this strategy results in lower profits than the expected profit from playing the

mixed equilibrium strategy. Thus, strong bidders are willing to forgo a possibly higher

profit in order to avoid losing the auction. Subjects are more likely to choose this “safe”

strategy if the rent from playing this strategy is larger. In other words, the larger the dif-

ference in the valuations of the strongest and second-strongest bidder, the more often we

observe the use of the safe strategy.4

The results presented in this paper are linked to a large experimental literature on

contests (for a comprehensive survey see Dechenaux, Kovenock, and Sheremeta 2012).

While this literature puts much emphasis on tournaments, Tullock contests, and incom-

plete information all-pay auctions, a smaller number of papers focus on complete infor-

mation all-pay auctions (e.g., Davis and Reilly 1998, Gneezy and Smorodinsky 2006, Lu-

govskyy, Puzello, and Tucker 2010, Ernst and Thöni 2013, Cason, Masters, and Sheremeta

2010, or Llorente-Saguer, Sheremeta, and Szech 2016).5 In all-pay auctions with complete

information all equilibria are in mixed strategies, and most papers concentrate on the

symmetric all-pay auction (with the exception of Davis and Reilly 1998, Cason, Masters,

4In the appendix we present additional evidence from two treatments where valuations vary across
periods and thus allows us to study the exclusion principle for a broad range of parameters. We show that
in about 80 percent of cases excluding the strongest bidder does not pay off, even though it should in
theory. This is more likely the case when the strongest bidder is far superior to the other bidders. Again, a
major reason for this is the excessive bidding and the associated prevalence of safe bidding of the strongest
bidders.

5Hillman and Riley (1989) and Baye, Kovenock, and de Vries (1996) provide a theoretical account of all-
pay auctions with complete information and Konrad (2009) provides an extensive review of the theoretical
literature on contests.
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and Sheremeta 2010, and Llorente-Saguer, Sheremeta, and Szech 2016). There are two

noteworthy observations that emerge from these studies. First, subjects tend to overbid

in comparison to the Nash equilibrium.6 Second, bidding behavior is bimodal.7 That

is, while subjects seem to randomize their bids, they typically place too much weight on

zero or low bids as well as on high bids.8 Our results provide further support for these

two observations. We find significant overdissipation by the strongest bidder (similar to

Davis and Reilly 1998) as well as evidence that weaker bidders frequently drop out of

the auction. Such a discouragement effect evoked by the presence of a strong bidder can,

for example, translate into a lower entry rate of weaker contestants (Cason, Masters, and

Sheremeta 2010). We contribute to this literature by investigating asymmetric all-pay auc-

tions and, in particular, by testing whether the exclusion of the strongest bidder increases

total revenues for the contest designer (exclusion principle).

2 Theory and Experimental Design

2.1 All-pay Auction and Theoretical Predictions

We consider the case of an all-pay auction with complete information as analyzed by

Hillman and Riley (1989) and Baye, Kovenock, and de Vries (1993) with one prize and up

to three bidders. All participants in the auction are assumed to be risk neutral and they

value the prize differently, where a high valuation can alternatively be interpreted as a

bidder having low costs of exerting effort in the contest. The valuations vi, i ∈ {1, 2, 3},

are commonly known and are heterogeneous in our setup, such that they can be ordered

6Anderson, Goeree, and Holt (1998) show that this overdissipation pattern can be explained by a logit
equilibrium in which agents commit mistakes by choosing bidding strategies that do not give the highest
expected payoff.

7Overbidding and heterogeneity in bidding is also a common pattern in lottery contests. For an
overview see Sheremeta 2013.

8Bimodal bidding is also frequently observed in all-pay auctions with incomplete information, in which
subjects tend to bid only if their valuations are above a certain cut-off level and abstain from bidding oth-
erwise (see e.g., Müller and Schotter 2010, Noussair and Silver 2006, or Barut, Kovenock, and Noussair
2002).
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as v1 > v2 > v3. All participating bidders simultaneously submit their bid xi. The bidder

with the highest bid xi wins the auction, receives the prize that she values vi, and pays

her bid xi. All other bidders lose their bid without gaining anything. Ties are broken

randomly.

In this setup, a unique mixed strategy equilibrium exists that is described in the

following. With one prize, only the two bidders with the highest valuations actively par-

ticipate in the auction. The bidder with the third-highest valuation remains inactive, as his

expected value from participating in the contest is negative. The bidder with the high-

est valuation in the contest randomizes continuously and uniformly over [0, v2], where

v2 denotes the second-highest valuation among the participating bidders. The bids of

the bidder with the second-highest valuation v2 are also uniformly distributed, given

that he submits a positive bid. However, he remains inactive, i.e., bids zero, with prob-

ability (1− v2/v1), where v1 denotes the highest valuation among the participating bid-

ders. Therefore, the strongest bidder randomizes according to the distribution function

G1 (x) = x/v2 and the second-strongest bidder according to G2 (x) = 1− v2/v1 + x/v1.

The expected bid of the bidder with the highest valuation in a period is E[x1] = v2/2 and

the expected bid of the bidder with the second-highest valuation in a period is E[x2] =

(v2)
2 /2v1.

In expectation, the strongest bidder in the auction receives a payoff of v1 − v2,

whereas the expected payoff of the second-strongest bidder is zero. The expected sum of

bids, i.e., the revenue of the auction, adds up to W(v1, v2) =
(

1 + v2
v1

)
v2
2 . Thus, in order

to maximize the auctioneer’s revenue, the bidder with the highest valuation, v1, should

be excluded from the auction whenever

(
1 +

v2

v1

)
v2

2
<

(
1 +

v3

v2

)
v3

2
. (1)

This inequality is fulfilled if v1 >> v2 ≥ v3, i.e., if v1 is sufficiently large compared to
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the other valuations. The intuition behind this result is straightforward. The presence of

a very strong bidder not only discourages the weakest bidder v3 from participating, but

also decreases the probability of participation and thus the expected bid of the second-

strongest bidder v2. Excluding the strongest bidder v1 can thus increase the participation

and bids of both weaker bidders. How profitable the exclusion of the strongest bidder is,

depends on the valuation of the strong bidder and on how small the difference v2− v3 is,

since the expected revenue from exclusion is increasing in v1 and v3, see inequality (1).9

Accordingly, the auctioneer might prefer a contest with individually weaker but more

homogeneous bidders over a contest with a far superior bidder that leads to a less intense

competition. In the remainder we will refer to the bidder with valuation v1 as the high

type. The bidders with valuations v2 and v3 are referred to as medium type and low type,

respectively.

2.2 Design

The experiment consists of two parts. In each session we first elicit subjects’ risk attitudes

and we then run the all-pay auction with complete information described above.

The theoretical model assumes risk-neutral players, but risk aversion is an often

proposed candidate to explain behavior in auctions. In order to have a measure of sub-

jects’ risk attitudes, we directly elicit risk preferences using a binary lottery procedure (see

e.g., Holt and Laury 2002, Dohmen and Falk 2011). The procedure includes 15 decisions

between a binary lottery and a safe option. The binary lottery is always the same, paying

e4 or nothing with a 50 percent chance each, while the safe option increases from e0.25

to e3.75 in steps of 25 cents. A weakly risk-averse person would prefer the safe option

over the lottery for safe options lower or equal to e2.10

9Note that the difference in revenues of the no-exclusion and the exclusion condition is concave in the
difference v1 − v2.

10This holds for subjects with monotonic preferences. We did not enforce monotonic preferences but
point out in the instructions that we assume that subjects stick to their decision once they have switched
from the lottery to the safe option. In our data, 17 out of 144 subjects (12 percent) switched multiple times
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After the first task, subjects repeatedly play the all-pay auction for 50 periods.

In the beginning, we randomly assign subjects to a six-person group (matching group),

which is fixed for the remainder of the experiment. Within a matching group we ran-

domly match subjects into two bidding groups of three in each of the 50 periods. The

bidders differ only with respect to their valuations v1 > v2 > v3, i.e., each bidding group

consists of a high, medium, and low type. These valuation are randomly assigned to a

subject in each period. While we always use the same valuations for the medium type

(v2 = 16) and low type (v3 = 15), we vary the valuation of the high type v1 ∈ {30, 51}.

More specifically, we either use valuations v ∈ {30, 16, 15}, hereafter denoted as treatment

High30, or v ∈ {51, 16, 15}, hereafter denoted as treatment High51, in a session.

In each period, the bidder with valuation v1 is excluded from the auction with

probability p = 0.5.11 Subsequently, subjects learn whether the auction is run between

two or among three bidders before placing their bids, and know the valuation of the

other bidders. Bids are unrestricted and subjects can use a resolution up to three decimal

places. At the end of each period they are given information on their earnings and the

winning bid. Bidders who are excluded from participation are also informed about the

winning bid, but do not earn anything in that period. To facilitate the understanding of

the strategic aspects of the auction, subjects experienced each bidder role v1 > v2 > v3

over time.

In both High30 and High51, it is profitable for the auctioneer to exclude the bidder

with the highest valuation v1 from a theoretical perspective.12 High types face in both

settings two bidders with valuations v2 = 16 and v3 = 15, and thus should bid the

same in expectation, as their behavior depends only on v2. In contrast, the behavior of a

between the safe option and the lottery.
11The instructions stated that the computer will randomly decide with a probability of 50 percent whether

the group member with the highest valuation is excluded in a period. For the detailed explanation in the
instructions, see Appendix C.1.

12The predicted overall revenues in the no-exclusion condition are 12.27 in High30 and 10.51 in High51,
whereas the revenues in the exclusion condition are 14.53 in both treatments since the valuations of medium
and low types are always the same. While the absolute difference between the exclusion and no-exclusion
condition seem small, the relative difference is substantial (18 and 38 percent).
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medium type depends on v1. Therefore the share of zero bids should increase and overall

revenues should decrease with the distance v1− v2. Exclusion of the high type results in a

relatively homogeneous bidder group where both the medium and the low type increase

their bids substantially, yielding higher revenues overall. Our primary aim is therefore

to compare the revenue of an auction with two “homogeneous” bidders with valuation

v2 and v3 (exclusion condition) to the revenue of an auction with all three bidders with

valuations v1 > v2 > v3 (no-exclusion condition) and to explore whether the strength of

the high type matters for the exclusion principle from a behavioral perspective.13

We conducted seven computerized sessions with 18–24 participants each at the

experimental laboratory at the TU Berlin using the software tool kit z-Tree (Fischbacher

2007). Because we randomly matched subjects in groups of six (matching groups), we

have observations from 24 independent groups in total, which provide the basis for our

statistical analysis below.14

Subjects were recruited from a large database where students can voluntarily reg-

ister for participating in experiments (ORSEE, Greiner 2015). Upon entering the lab, sub-

jects were randomly assigned to computer terminals. First, the instructions for the lottery

choice procedure were displayed on their computer screen. At that point subjects had

no information about their subsequent task in the second part of the experiment. After

completing the lottery choice task, subjects received written instructions for the all-pay

auction, including a test to confirm their understanding. We only proceeded with the sec-

13Prior to the sessions reported here, we ran four sessions that used a slightly different setup. In these
sessions, bidders faced different sets of valuations in each period and thus a more complex strategic situa-
tion. Specifically, we randomly drew the valuations for the two weaker bidders, v2 and v3, from a discrete
uniform distribution over the interval [11, 20] and the valuation v1 from a discrete distribution over the
interval [15, 55] in each period and randomly assigned them to subjects. All valuations were drawn before
the experiment and we constructed two treatments based on these valuations. That is, in one treatment the
valuations were sufficiently heterogeneous such that the exclusion of the high type v1 was always profitable
for the contest designer, whereas in the second treatment the exclusion of the high type is never profitable.
This allowed us to analyze the exclusion principle and bidding behavior in a rich environment that is not
idiosyncratic to a specific choice of valuations. We present the results of these two treatments in Appendix
B and show that our findings from the treatments reported here are robust to the assignment of valuations
(random or fixed valuations).

14Note that we treat a matching group as an independent observation because the behavior over time is
likely to depend on previous interactions in a bidding group.
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ond part after all subjects had answered all test questions correctly. In addition, there was

a trial period to familiarize subjects with the computer interface and the auction format.

At the end of the second part of the experiment, the computer randomly drew 10 out

of the 50 periods to determine subjects’ earnings. The sum of points in these 10 periods

plus the earnings from the lottery choice task were exchanged at a rate of 10 points = e1.

Additionally, participants received an initial endowment of e10 to cover potential losses.

In total, 144 students (95 males and 49 females) from various disciplines participated in

the experiment. Sessions lasted about 90 minutes and subjects’ average earnings were

approximately e15.

3 Results

3.1 Aggregate Results and the Exclusion Principle

We begin our analysis by looking at the variable of greatest interest to the contest de-

signer: the revenue of the contest. Table 1 presents the summary statistics of observed

behavior along with the theoretical prediction for the pooled data set and for both treat-

ments separately broken down into the exclusion and no-exclusion condition. The exclu-

sion condition consists of all situations in which the bidder with the highest valuation

(v1) is excluded from participating in the auction, whereas in the no-exclusion condition

all three bidders participate. According to the exclusion principle, we would expect that

exclusion leads to higher revenues for the contest designer in both treatments.

However, in strong contrast to this prediction we find that the exclusion of the

bidder with the highest valuation never generates higher revenues than a situation with

three bidders. In the pooled data set the average sum of bids is about 15.9 with exclusion

and 18 without exclusion. Clearly, we can reject the hypothesis of equal revenues in the

two conditions (Wilcoxon signed-rank test, z = 2.4, p < 0.017, n = 24), albeit not in

favor of our alternative hypothesis that exclusion is profitable. Looking at each treatment

9



Table 1: Summary statistics of bids in the control treatment

Pooled High30 High51

No excl. Excl. No excl. Excl. No excl. Excl.

avg. sum of bids 18.02 15.9 17.81 16.88 18.3 14.54
(9.05) (8.42) (8.83) (8.6) (9.35) (7.97)

pred. sum of bid 11.54 14.53 12.27 14.53 10.51 14.53

N 1203 1193 707 692 496 501

minimum bid 0 0 0 0 0 0
maximum bid 57.5 61.6 57.5 61.6 53 31
Notes: Standard deviations in parentheses. No exclusion (No excl.) refers to
situations in which all three bidders participate and exclusion (Excl.) refers
to situations where only the medium and low type participate.

separately confirms that it does not pay off to exclude the strongest bidder in our setup.

However, while the average sum of bids in the no-exclusion condition is higher than

revenues with exclusion in both High30 and High51, the difference is less pronounced

when the high type is weaker, i.e., when v1 − v2 is smaller as in High30.15

From Table 1 it is apparent that, on average, revenues are always higher than pre-

dicted (overbidding), except in the exclusion condition in High51. When all three bidders

participate (no-exclusion condition), we observe that revenues are between 1.5 and 1.7

times higher than predicted. Accordingly, we find that in 79 percent of periods revenues

are higher than predicted when all three bidders participate in the auction (High30). This

share is slightly higher in High51 at 85 percent. The observed overbidding is less promi-

nent in the exclusion condition. For example, the sum of bids is about 1.2 times higher

than predicted in the exclusion condition in High30, whereas the average revenues are

close to the prediction in High51.

Why is it the case that exclusion does not lead to higher revenues? We have seen

that there is substantial overbidding in the presence of three bidders and we can ask

whether exclusion would have been profitable if the strongest bidders had behaved as

15The difference in the average sum of bids between the two conditions (exclusion and no exclusion) is
not statistically different in High30 (Wilcoxon signed-rank test, z = 0.97, p = 0.33, n = 14), but in High51
(Wilcoxon signed-rank test, z = 2.4, p < 0.017, n = 10).
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Table 2: Summary statistics of individual bids of bidder types

High30 High51

High Medium Low High Medium Low

no exclusion
avg. bid

13.74 2.36 1.71 15.07 2.15 1.09
(4.92) (5.19) (4.57) (6.71) (5.04) (3.58)

avg. predicted bid 8 4.27 0.00 8 2.51 0.00

exclusion
avg. bid

- 10.39 6.49 - 9.09 5.45
(5.44) (6.59) (5.23) (5.81)

avg. predicted bid - 7.5 7.03 - 7.5 7.03
Notes: Standard deviations in parentheses. We excluded bids xi > 55. This was the
case in 4 out of 7,200 individual bids.

prescribed by theory. For this thought experiment, we calculate the revenues in the no-

exclusion condition using the actual bids of the two weaker bidders and the theoretical

bid of the strongest bidder. As predicted by the exclusion principle, this calculation shows

that revenues without exclusion would be lower than with exclusion in High30 (12.1 vs

16.88) and in High51 (11.3 vs 14.54). In both cases the difference in revenues is statistically

different (Wilcoxon signed-rank test z = 3.2, p < 0.01, n = 14 in High30 and z = 2.5,

p < 0.015, n = 10 in High51). This counterfactual analysis suggests that the behavior of

the strongest bidder plays a major role in explaining why the theory is not predictive.

3.2 Individual Behavior

The preceding analysis has suggested that overbidding with respect to the theoretical

prediction plays an important role for the unprofitability of exclusion. To get a deeper

insight into the underlying reasons, we will now turn to a more thorough analysis of the

three bidder types. Table 2 provides an initial overview of the average bids of each bidder

type in the no-exclusion condition (top panel) and the exclusion condition (bottom panel)

for each treatment. Figure 1 presents the cumulative distribution of bids for each type in

the no-exclusion condition (left panel) and the exclusion condition (right panel).

It is striking that the strongest bidders bid more than predicted, as evidenced in
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Figure 1: Cumulative distribution of bids of types in the exclusion and no-exclusion condition.
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Table 2. If high types participate in the auction (no-exclusion condition), they bid 1.7 and

1.9 times more than predicted by theory, respectively (Table 2, top panel). The difference

between actual bids and predicted bids is statistically significant in both cases (Wilcoxon

signed-rank tests, p < 0.01). It is also noteworthy that in the no-exclusion condition

medium types bid less than predicted and that low types participate too much. A similar

picture emerges in the exclusion condition, where again the bidders with the highest val-

uation, i.e., the medium types, bid on average more than predicted. Again, the difference

between actual bids and predicted bids is statistically significant in both cases (Wilcoxon

signed-rank test, z = 3.3, p < 0.01, n = 14 in High30, and z = 2.3, p < 0.025, n = 10 in

High51).

A closer look at the bidding behavior of the strongest bidders reveals an inter-

esting regularity in both treatments and conditions. According to theory, the strongest

bidder’s bid should be uniformly distributed over the interval [0, v2], where v2 denotes

the valuation of the bidder with the second-highest valuation (either the medium type in

the no-exclusion condition or the low type in the exclusion condition). Over the periods,

there should not be any mass points or bids at or above v2. Yet, we observe behavior that

is completely distinct from this prediction.

From Figure 1 it is apparent that a substantial share of bids is equal or above the

valuation of the second strongest bidder, i.e., x1 ≥ v2. This is particularly the case in the

no-exclusion condition (top-left panel of Figure 1). When high types participate in the

auction, in about 63 percent of cases we observe bids that are equal to or higher than the

valuation of the second strongest bidder in High30. If the contest is even more heteroge-

neous, as in High51, this fraction is 11 percentage points higher. Such bidding behavior

with a mass point at the second-highest valuation is also present in the exclusion condi-

tion, albeit to a much lesser extent (top-right panel of Figure 1). About 26 percent of bids

in High30 and 21 percent of bids in High51 are equal to or larger than the valuation of the

second strongest bidder. We refer to bidding behavior at or above v2 as a “safe” strategy

13



Table 3: Bidding behavior of the strongest bidder in the control treatment.

Percentage of bid x Profits

x = 0 0 < x < v2 x = v2 x > v2 N 0 < x < v2 x ≥ v2

No exclusion
High30 0% 37.5% 8.6% 53.9% 707 14.9 11.0

High51 0.4% 25.3% 11.2% 63.1% 498 35.9 30.4

Exclusion
High30 1.2% 72.8% 11.6% 14.4% 692 0.4 -0.4

High51 1.4% 77.7% 9.4% 11.5% 502 2.5 0.1
Notes: The strongest bidder in the no-exclusion condition is the high type, and the
medium type is the strongest bidder in the exclusion condition in High30 and High51.

as a bidder applying this strategy should win the auction for sure.16

There are two major strategic differences between the exclusion and no-exclusion

condition that may account for the pronounced difference in the use of this safe strategy

in these two conditions. First, the difference in valuations v1 − v2 is larger in the no-

exclusion than in the exclusion condition. This implies that the “certain” profit that the

high types potentially forgo by not playing the safe strategy is larger than for the medium

type. In other words, high types have more to lose should they play a mixed strategy

instead of the safe strategy, and thus may have more to regret if they place a bid lower than

v2 and lose the auction. Second, high types face two competitors that are almost equally

strong, whereas medium types in the exclusion condition are confronted with only one

other opponent with a slightly lower valuation. Although the number of competitors

should not matter in our setup, it may make a difference behaviorally and we explore

how the bidding behavior of weak types affects the use of the safe strategy in more detail

below.
16Playing “safe” is consistent with a level-k reasoning process (see e.g., Stahl and Wilson 1995, Nagel

1995). Assuming that a level-0 player i randomizes bids in the interval [0, vi], a level-1 high type would best
respond to this belief by playing safe, whereas a level-1 medium type would best respond to this belief by
playing the mixed Nash equilibrium strategy. In turn a level-2 high type believes that he is facing a level-1
medium type and thus would best respond by playing the mixed equilibrium strategy, whereas a level-2
medium type best responds to a level-1 high type by placing a zero bid. Note that level-k low types (k > 0)
never place a positive bid.
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3.3 Anatomy of Safe Bidding

In this section we explore in more detail why we observe such massive bidding at or

above v2. Table 3 provides further details on the distribution of the bids of the strongest

bidders. First, if the strongest bidders do not adopt the safe strategy, they obviously resort

to bids in the interval (0, v2) in both conditions. In fact, they spread these bids over the

whole interval and the distribution closely resembles a uniform distribution as predicted

(see Figure 2 in Appendix A). Accordingly, it is not surprising that average bids are close

to the theoretical prediction as well. In High30 the average of bids in this interval is in both

conditions 8.7, whereas in High51 the average bid is 6.7 in the no-exclusion and 7.6 in the

exclusion condition. Second, a significant share of safe bids is even strictly greater than

v2. However, we have to note that the overwhelming majority of these bids (74 percent)

are in a comparatively small interval (v2, v2 + 1].

We confine our analysis in the following to the no-exclusion condition because the

safe strategy is vastly more popular when the strongest bidder (high type) is present and

because we have seen that the failure of the exclusion principle is related to the behavior of

high types. Playing the safe strategy is certainly not in line with theory, which predicts no

mass point at v2 and certainly not above, yet a subject’s profit from playing safe should be

approximately v1 − v2, given that the bid is infinitesimally larger or equal to v2 and that

they win the auction. Notice that this corresponds to the expected profit of playing the

mixed equilibrium strategy.

We find, however, that the profits from playing the safe strategy are lower than

this theoretical benchmark. For example, Table 3 shows that in the no-exclusion condi-

tion the average profits are clearly below v1− v2, with 11 in High30 and 30.4 in High51. In

contrast, bidding in (0, v2) results in average profits that are close to the theoretical bench-

mark (with 14.9 in High30 and 35.9 in High51), and are thus higher than when bidding safe.

The differences in profits are significant in both cases (Wilcoxon signed-rank test z = 2.04,
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p < 0.045, n = 14 in High30 and z = 2.5, p < 0.015, n = 10 in High51).17 Consequently,

by choosing the safe strategy the strongest bidders forgo a substantial part of their rent in

order to increase their chance of winning.18 More precisely, they earn only about three

quarters of the average profits accruing from a bid in the interval (0, v2) in High30 when

placing a safe bid. In High51 the foregone profits are smaller than in High30 as they earn

about 85 percent of the expected profit. The lower average profits from playing the safe

strategy result from bidding above the valuation of the second strongest bidder, which

naturally reduces profits, and from the fact that the safe strategy does not guarantee win-

ning the auction. In about 6 percent of cases high types lose the auction even though they

use the safe strategy, which leads to large losses.

A possible explanation for the prevalence of the safe strategy and the associated

lower profits is the excessive bidding of the weaker types. Going back to Figure 1, we ob-

serve that the two weaker types often drop out of the bidding process in the no-exclusion

condition, i.e., bid zero (see left-panel of Figure 1). However, while medium types tend

to drop out too much, low types drop out too little.19 In fact, low types should never

participate in the no-exclusion condition, i.e., never place a positive bid.

In High30 we observe that medium types abstain from bidding (placing a zero bid)

in about 72 percent of cases, whereas low types abstain in only 76 percent of cases. In

theory we should observe in about half of the periods (47 percent) only bids from high

types and in the remaining periods positive bids from both high and medium types. The

observed bidding behavior of the two weaker bidders in High30 implies that in about 56

17In the exclusion condition profits are on average also higher for bids in the interval (0, v2) than for
the safe strategy. However, the magnitude is much smaller as the expected payoff for the strongest bidder
is v1 − v2 = 1. The difference in profits is only significant in High51 (Wilcoxon signed-rank test z = 2.3,
p < 0.025, n = 10).

18While the predicted probability of winning is 73 percent in High30, high types win the auction in 88
percent of cases. Similarly, the probability of winning is 8 percentage points higher than predicted in High51
(92 percent vs. 84 percent).

19This represents mixed evidence for a discouragement effect, i.e., the tendency of weaker types to drop
out of the bidding process in the presence of a strong bidder. But it is line with findings for real-effort
tournaments. For example, Gill and Prowse (2012) find evidence of a discouragement of the weaker partic-
ipants, whereas Berger and Pope (2011), Hammond and Zheng (2013), or Chen, Ham, and Lim (2011) find
no effect.
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percent of cases high types are the sole bidders. In 20 percent of cases their lone com-

petitor is the medium type, in 16 percent of cases it is the low type, and in 8 percent

both weak types are active. Accordingly, we find that medium types abstain too often

from bidding in High30, but low types’ behavior compensate for the less frequent bids

of medium types. Conditional on participation, medium types overwhelmingly place a

bid below their valuation, i.e., v2 = 16, (in 17 percent of cases bids are above their own

valuation) and the average bid is 8.4 in High30. Similarly, if low types participate in the

auction they bid on average 7.1 in High30, with a large majority of their bids below their

valuation of v3 = 15 (88 percent). This behavior gives rise to winning the auction in 26

(20) percent of cases for medium (low) types, conditional on participation. Overall their

profits are negative, albeit as predicted close to zero for both types (-1).

In High51 we see that medium types place a zero bid in about 68 percent of cases

and low types participate in 22 percent of cases. This is close to the theoretical predic-

tion for medium types, who should abstain in 69 percent of cases, but not for low types.

Thus, in contrast to High30 high types face an active competitor more often than predicted

because of low types’ bidding behavior in High51. They are the lone bidder in only 54 per-

cent of cases.20 If medium types participate in the auction, they predominantly place a

bid below their valuation (in 17 percent of cases bids are above their own valuation) and

the average bid is 6.8. Similarly, the vast majority of bids from low types is below their

valuation v3 = 15 (93 percent) and their average bid is 5. Again, this results in a fairly

high share of wins (17 percent for medium types and 14 percent for low types), but this

is not enough to yield positive profits on average. Similar to High30, profits are close to

zero, but slightly negative (-1) over all periods.

The distribution of winning bids, which is observed by subjects, reflects these dif-

ferences in participation of weaker types. There are significantly less winning bids in a

low range [0, 16) in High51 than in High30 (24 percent vs. 36 percent) and, consequently,

20Medium types are the lone competitor in 24 percent of cases, low types in 14 percent of cases, and in 8
percent of cases they are both active at the same time.
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significantly more winning bids above v2 = 16 in High51 (Fisher’s Exact test, p = 0.44).

Therefore, this suggests that the participation of low types has triggered more safe bidding

of high types in High51 compared to High30.

Together, it seems that the bidding behavior of the weaker types results in more safe

bidding and thus higher winning bids in High51 compared to High30. This also suggests

that weaker types bid too much on average and that they could improve their profits by

abstaining more often from bidding (in particular low types) or at least by refining their

bids on the interval between zero and their own valuation in both treatments. However,

the profits of both the medium and low type are on average only slightly below zero, and

thus the losses might be too small to induce a significant change in bidding behavior. On

the other hand, high types could substantially increase their profits in the no-exclusion

condition by deviating to the equilibrium strategy in both High30 and High51, given the

behavior of the two weaker bidders.

The preceding analysis also suggests that there is a substantial share of safe bidding

when the bids of low types are substituting the missing bids of medium types, as in

High30, i.e., when high types do not face more competition. To get a more complete

picture of why strong bidders in the no-exclusion condition choose the safe strategy, we

present results from a set of probit regressions in Table 4. Linear probability regressions

yield qualitatively similar results. In all specifications the dependent variable is a binary

variable for playing the safe strategy, i.e., this variable equals one if the strongest bidder

has chosen a bid that is at least as high as the valuation of the medium type.

The regression in column (1) provides statistical support for the observation that

safe bidding is more frequent in the no-exclusion condition of High51 (see Table 3). More-

over, we see that, overall, the prevalence of safe bidding decreases significantly over time.

In columns (2–4) we explore how feedback and previous performance affect the likeli-

hood of playing safe. Column (2) captures how feedback, i.e., the observed winning bid

in the last period, influences safe bidding. The positive and significant coefficient indi-

18



cates that observing a higher winning bid in the previous period increases the likelihood

of a safe bid. This suggests that observing more safe bids in the past is subsequently re-

lated to more safe bidding in a group. Column (3) and (4) investigate how an individual’s

past profits affect safe bidding. While the profit in the previous period has no effect on

safe bidding, accumulated profits have a negative effect on safe bidding. More precisely,

a 10-point increase in accumulated profits is associated with a 2 percentage-point lower

likelihood of safe bidding. This negative relationship suggests that less successful bidders

in particular resort to the safe strategy. Note that accumulated profits also capture a time

trend which renders the coefficient on “Period” insignificant. Column (5) shows that the

results do not change if we include all three variables at once. In column (6) we addition-

ally control for risk aversion by including a dummy variable, which equals one if a subject

prefers safe options smaller or equal to the expected value of the lottery in the lottery task.

The coefficient for risk aversion indicates that risk-averse subjects are more likely to play

the safe strategy, but it is not significant and it does not change any other coefficients. We

should, however, keep in mind that our measure for risk aversion is naturally measured

with error resulting in a downward bias.21

In the final three columns we investigate how own behavior and experience in

early periods affect behavior in later periods. It is, for example, conceivable that the

strongest bidders draw inferences about the behavior of their competitors from their own

behavior as a weak type, or alternatively, that they have a tendency to bid high irrespec-

tive of circumstances. To this end, we split the data set and use bidding behavior in

periods 1–20 to explain the likelihood of safe bidding in periods 21–50.22 First, we investi-

gate the consequences of initial bidding behavior as a weak type – either as a medium or

low type – on subsequent bidding as a strong type in periods 21–50. Column (7) shows

21See Gillen, Snowberg, and Yariv 2015 for an extensive discussion of measurement error in experimen-
tally elicited measures. In Appendix A, we present additional regressions with multiple elicited controls for
risk preferences as suggested by Gillen, Snowberg, and Yariv 2015. Again, the coefficient does not change
and the regression results confirm that the safe strategy is more common in High51.

22The results are robust to using behavior in periods 1–10 or 1–15 to explain safe bidding in the subsequent
periods.
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that higher average bids as a weak type in the first 20 periods lead to significantly more

safe play in periods 21–50 as a strong type. If we assume that subjects project their ex-

perience as a weak type onto others, this result provides support for the conjecture that

the behavior of the weak types triggers, in part, the safe strategy of the strongest bidders.

It is also in line with the earlier finding that less successful subjects tend to use the safe

strategy more often.

This relationship between behavior in early and later periods is also true if we re-

lax our restriction on weak types and include individual average bids in periods 1–20

considering all bidder roles (column 8). Finally, the previous analysis suggested that ex-

periencing more safe play in initial periods has an impact on own safe bidding in later

periods. The last column provides a more direct test for this finding and demonstrates

that experiencing more safe play in the beginning (i.e., the first 20 periods) induces sub-

jects to choose more safe bids as well, thus confirming our earlier finding.

In summary, we find that safe bidding is more prevalent among very strong bid-

ders (v1 = 51) suggesting that this strategy is more attractive the higher the secure rent

from winning is. It seems that a significant part of this behavior originates in own initial

behavior as one of the weak types as well as in experiencing more safe bidding in the

beginning.

4 Discussion and Conclusion

Superstars can have a major impact on the attractiveness of contests, but at the same

time their presence can detrimentally affect their competitors’ willingness to exert effort.

In this paper, we experimentally investigate the effect of excluding superstars from the

contest and thereby creating a more homogeneous participant pool. We find that in our

setting excluding the strongest bidder is, in general, not beneficial for the contest designer.

The main reason for this result is, in particular, the bidding behavior of the strongest
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bidder when they participate in the all-pay auction. We find that these “superstars” often

apply a strategy which guarantees they will win the auction. That is, they bid at least the

valuation of their most powerful competitor, which implies that they prefer to give up a

substantial part of their rent in order to avoid losing the auction. Moreover, the tendency

of the strongest bidder to choose the safe strategy increases in their valuation.

The observed safe bidding is consistent with a non-equilibrium model of limited

sophistication (Stahl and Wilson 1995, Nagel 1995). In the standard formulation of this

model players anchor their beliefs on a non-sophisticated level-0 player but differ with

respect to their levels of reasoning.23 In our setup the mass point at v2 may be ex-

plained with level-1 high types best responding to a belief that all others are level-0 players

who randomize their bid in the interval [0, v2]. This suggests that safe bidding is a low-

cognition strategy as it guarantees a profit that corresponds in most cases to the expected

profit from playing a mixed strategy. Thus engaging in more levels of reasoning or in-

vesting more cognitive resources may not be worthwhile. Note, however, the level-k

approach does not explain the higher share of safe bidding in High51 compared to High30

as the potential absolute gain from bidding less than v2 is the same in both cases.

Since playing a mixed strategy can involve a loss, loss aversion has been used to ex-

plain the observed overbidding behavior (e.g., Müller and Schotter 2010, Ernst and Thöni

2013). A loss-averse bidder would incur additional disutility from losing the auction and

this disutility depends only on the bid but not on the valuations of bidders. Thus, while

loss aversion may explain some of the safe bidding, it cannot explain why we observe

more safe bidding in High51 than in High30.

An alternative explanation for the prevalence of safe bidding among high types is

regret. Placing a bid below v2 and losing the auction may create feelings of regret because

such a situation could easily have been avoided by placing a bid at or slightly above v2

23An alternative way to model “bounded rationality” posits that players have correct beliefs but best-
respond with noise. For example, Anderson, Goeree, and Holt (1998) present a logit equilibrium model
where players choose bids with higher expected payoffs with higher probability, which is consistent with
observed overdissipation patterns found in all-pay auctions.
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generating a certain profit of v1 − v2. This kind of regret is specific to our complete infor-

mation environment since it presumes that the valuations of the competitors are public

knowledge.24 As such, regret depends on v1− v2, which implies that a regret-averse high

type is more likely to play safe in High51 than in High30. Thus, this notion of regret is

consistent with the higher share of safe bidding in High51 than in High30.

Of course, medium types (and low types) should anticipate high types’ inclination

to bid safe and resort to zero bidding, particularly since they get feedback about the be-

havior of high types. However, on the surface it seems that weak types tend to participate

too often and subsequently bid too much. In High30 we indeed find that medium types re-

duce their bidding activity, but this lower activity is completely offset by the participation

of low types. Similarly, we observe that contrary to the theoretical prediction low types

participate in the auction in High51. But in this case this behavior complements the bid-

ding activity of medium types such that high types face an active competitor more often

than predicted. Although weak types seem to not best respond to high types’ behavior,

we observe that their profits are close to the prediction of zero profits in both treatments.

Since the losses seem negligible, weak types do not reduce their bidding.

Given the behavior of the two weak types, high types do not best respond either.

They could clearly improve their profits by adopting a mixed strategy. In fact, high types

who place a bid in [0, v2] earn significantly more than high types who play safe. The

prevalence of safe bidding, however, suggests that for most high types even a small chance

of a positive bid from a weak type is enough to induce safe bidding. Using data from

NASCAR races, Bothner, Kang, and Stuart (2007) demonstrate that lower ranked drivers

can induce higher ranked drivers to take more risk to avoid losing the race or to fall in

the ranking.25 A similar motivation may lead to more safe bidding and to thus securing

24Regret has been previously analyzed in symmetric or incomplete information auctions (see e.g., Filiz-
Ozbay and Ozbay 2007, Baye, Kovenock, and de Vries 2012 or Hyndman, Ozbay, and Sujarittanonta 2012).
Unlike in our setting, in symmetric auctions there is no possibility for the bidders to generate a secure
positive payoff and therefore the amount of regret a bidder experiences in the case of a loss depends on the
winning bid of their opponent.

25The NASCAR race series is a multiple-round tournament, where rankings are publicly available and

23



the prize in our setup.

The composition of teams is critical for the performance of firms and organizations

in general (Mathieu, Tannenbaum, Donsbach, and Alliger 2014) and for contest design-

ers in particular. From a theoretical perspective installing a contest with homogeneous

bidders leads to full rent dissipation (see e.g., Hillman and Riley 1989, Baye, Kovenock,

and de Vries 1993), whereas revenues decrease with the heterogeneity of bidders. In prac-

tice, firms typically face a heterogeneous workforce, and still scholarly research indicates

that relative performance schemes are widely applied in the firm context (e.g., Connelly,

Tihanyi, Crook, and Gangloff 2014). Our paper focuses on heterogeneous contests with

the presence of a superstar and our results may have several managerial implications in

terms of designing contests.

That superstars prefer a safe bid over a mixed strategy even though this is less

profitable suggests that our setup renders non-material factors important. In addition

to the utility from the monetary outcome, the strongest bidder may, for example, incur

disutility from feelings of regret in case of losing the auction or, more generally, suffer a

psychological loss as they expect to win owing to their superiority. If this is the case, man-

agers or contest designers may use such non-pecuniary motives of the strongest bidder

in their advantage. For example, by making sure that the bidders’ valuations are public

knowledge as this may provide a fertile soil for regret that may induce superstars to bid

safe. Although this is not always feasible, it is often possible to provide sufficiently cor-

related signals about the valuations of participating bidders or to provide updates of the

performance ranking of contestants (Casas-Arce and Martı́nez-Jerez 2009).

There are also good reasons for heterogeneous contests. Indeed, the presence of

a superstar can be, but need not be, detrimental to overall revenues. While we find evi-

dence of the latter, there are situations where the overall performance in a contest with a

are updated after each race. This rank updating naturally leads to a heterogeneous contest as previous
performance places some drivers in an advantageous and others in a disadvantageous position (see also
Casas-Arce and Martı́nez-Jerez 2009).
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superstar might be more superior than in a contest without a superstar because the valu-

ation gap between the weaker bidders is too wide to ramp up competition in the smaller

contest.26 In other cases, managers may want to benefit from the presence of a super-

star as they typically add status, popularity or glamor to the contest. The response of

the organizers of the Formula One racing series to the dominance of Michael Schumacher

discussed in the introduction illustrates such a case. Similarly, managers may implement

heterogeneous contests because they may reveal more information about bidders’ ability

(Gürtler and Gürtler 2015). This can be, for example, a relevant issue in law firms, con-

sultancies or investment banks where typically many associates compete for a few spots

as a partner and the company only wants to promote the most able associates. If man-

agers have a preference for a heterogeneous contest, they may boost overall performance,

for example, by handicapping bidders with the highest valuation (e.g., Lazear and Rosen

1981, Che and Gale 1998, Llorente-Saguer, Sheremeta, and Szech 2016) or by changing the

prize allocation rule (e.g., Cason, Masters, and Sheremeta 2010).27

Our findings suggest that admitting a superstar to the contest does not hurt over-

all performance in the contest, even though there is no handicapping or other measure

to increase participation of weaker bidders in place. In fact, our results on individual be-

havior are mostly in line with the qualitative theoretical predictions: weaker bidders are

discouraged in the presence of a superstar, but they substantially increase their participa-

tion and average effort (bids) in the absence of a superstar (see also Brown 2011 for field

evidence from the PGA Tour). However, the increased effort of the weaker bidders in the

absence of the strongest bidder cannot compensate for the lost effort of the superstar and

therefore we find little support for the exclusion principle.

26In Appendix B we present a treatment (EXUP) where the valuations of the weaker bidders are suffi-
ciently heterogeneous and find evidence that, as illustrated in the model in section 2.1, aggregate effort of
competitors in the absence of the superstar does not compensate for the lost superstar effort, i.e., overall
performance is superior in a contest with a superstar.

27Cason, Masters, and Sheremeta (2010) compare endogeneous entry of bidders in an all-pay auction
and proportional prize contest and find that the all-pay auction primarily attract high-ability contestant,
whereas the proportional prize contest also attracts low-ability contestants. Thus, there is a similar discour-
agement of low-ability contestants in their all-pay auction as in our study.
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A Additional Figures and Tables – For Online Publication

Figure 2 presents the cumulative distribution of the bids of the strongest bidder in the
exclusion and no-exclusion condition when not using the safe strategy along with the 45-
degree line resulting from the equilibrium predictions. In both conditions, we observe
that the distribution of bids is close to the theoretical prediction.
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Figure 2: Cumulative distribution of bids when not using the safe strategy.

For a subset of participants we have a second risk measure (N = 72). More pre-
cisely, in the last three sessions we asked subjects to assess their general willingness to
take risk on an 11-point scale. Following the suggestion of Gillen, Snowberg, and Yariv
(2015) we include both measures in our regressions in Table 5 below. First, we include
dummy variables for both measures. In the choice-list procedure we classify subjects as
risk averse if they switch from the lottery to the safe option as long as the safe option
is smaller than or equal to the expected value of the lottery. Similarly, we code subjects
as risk averse if they indicate a willingness to take risk below 6 on the 11-point Likert
scale of the risk question. As a second set of measures we use standardized values of the
switching point in the choice list and the answer in the risk question. The results indicate
that the coefficient for the treatment is remarkably stable across all specifications. While
a measurement error is still an issue, the results lend further credibility to our results
reported in Table 4.
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Table 5: Regression: Risk aversion and Choice of the safe strategy in the no-exclusion condition

(1) (2) (3) (4) (5) (6) (7)

High51 0.176∗ ∗ 0.174∗ ∗ 0.174∗ ∗ 0.172∗ ∗ 0.167∗ ∗ 0.171∗ ∗ 0.165∗ ∗
(0.067) (0.063) (0.068) (0.064) (0.071) (0.072) (0.074)

Period −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004
(0.003) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)

Risk averse MPL(D) 0.085 0.092
(0.090) (0.093)

Risk averse Q(D) 0.062 0.072
(0.088) (0.086)

Std Risk MPL −0.032 −0.026
(0.028) (0.031)

Std Risk Q −0.042 −0.037
(0.045) (0.047)

N 624 624 624 624 624 624 624
Notes: * p < 0.10, ** p < 0.05, *** p < 0.01
Linear Probability regressions with standard errors clustered on matching group level (in parenthe-
ses). Regressions use data from the last three sessions in which we elicited two risk measures. High51
is a dummy variable indicating that the v1 = 51. The variable “Period” captures a linear time trend.
“Risk averse MPL” is a dummy variable, which equals one if a subject prefers safe options smaller
or equal to the expected value of the lottery. Similarly, “Risk averse Q” is a dummy variable, which
equals one if a subject’s response is below six on the 11-point scale of the hypothetical question about
general willingness to take risks. “Std Risk MPL” and “Std Risk Q” are standardized variables with
zero mean and standard deviation one of subjects’ responses to each question. (D) denotes dummy
variable.

B Additional Treatments – For Online Publication

B.1 Setup

We conducted two further treatments to explore the exclusion principle in a richer envi-
ronment that is not idiosyncratic to a specific choice of valuations. In these additional
treatments we assigned new valuations to bidders in each period, which allowed us to
explore the exclusion principle for a broad range of parameters. The results of these addi-
tional treatments corroborate our findings from the main treatments.

As in our main treatment, bidding groups consist of three bidders with valuations
vH(igh) > vM(edium) > vL(ow), which were drawn before the experiment. Specifically,
two valuations vM and vL were drawn from the discrete uniform distribution over the
interval [11, 20] and the third valuation vH was drawn from a discrete distribution over
the interval [15, 55]. Based on these valuations we constructed two treatments. In one
treatment the configuration of valuations is such that the exclusion of the high type vH
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is always profitable for the contest designer (in the following treatment EXP – EXclusion
Profitable). In the second treatment, the composition of groups is such that excluding
the high type should result in lower revenues than letting all bidders participate in the
auction (in the following treatment EXUP – EXclusion UnProfitable). In EXP, the average
valuations are vH = 35.3, vM = 16 and vL = 14.7. In EXUP, these averages are vH =

30.9, vM = 17.9 and vL = 13. Note that this setup presents a more complex strategic
situation where finding the optimal bidding strategy is a rather difficult task as bidders
face different sets of valuations in each period. To facilitate the understanding of the
strategic aspects of the auction, subjects experienced each bidder role (vH,vM and vL)
over time.

Again, we randomized whether the bidder with valuation vH is excluded from the
auction or not and our aim was primarily to compare the revenue of an auction with two
“homogeneous” bidders with valuation vM and vL (exclusion condition) to the revenue of
an auction with all three bidders with valuations vH > vM > vL (no-exclusion condition)
within a treatment. We conducted four computerized sessions at the experimental labo-
ratory at the TU Berlin using the software tool kit z-Tree (Fischbacher 2007) with students
recruited from a large database where they can voluntarily register for participating in
experiments (ORSEE, Greiner 2015). The course of action was identical to our main treat-
ments. In particular, subjects first completed a lottery choice task and then the all-pay
auction was repeated 51 times (including one trial period) in both treatments. We ran-
domly assigned subjects to a six-person group (matching group) and randomly matched
subjects into two bidding groups of three in each period within a matching group. At the
beginning of each period, the subjects in each bidding group were randomly assigned a
valuation. The valuations were made public knowledge before bidding started and sub-
jects learned whether the high type was participating in a particular period, which was
randomly determined by the computer with probability p = 0.5. Subjects could place
bids with up to three decimal places and they were informed of their earnings and the
winning bid after each period. At the end of the second part of the experiment we pub-
licly and randomly drew eight out of the 50 periods to determine subjects’ earnings. The
sum of points in these eight periods plus the earnings from the lottery choice task were
exchanged at a rate of 10 points = e1. Additionally, the subjects received an initial en-
dowment of e10 to cover potential losses. In total, 72 students (40 males and 32 females)
from various disciplines participated in the experiment. Sessions lasted about 90 minutes
and subjects’ average earnings were approximately e15.

32



B.2 Results

In the following we focus our analysis on (i) aggregate behavior and (ii) individual bid-
ding behavior. In particular, we provide evidence that underpin the key results from our
main treatments. First, we confirm that excluding the bidder with the highest valuation
is on average not beneficial in the treatment in which exclusion should be profitable for
the contest designer (treatment EXP). Second, we show that this is due to the behavior
of the strongest bidders when they participate in the auction. Specifically, they predom-
inantly use the safe strategy, which in most cases guarantees them to win the auction.
Moreover, this strategy is more prominent the larger the difference in the valuations of
the strongest and second-strongest bidder is. Finally, the results represent a methodologi-
cal contribution by showing that our results are not affected by how we assign valuations,
i.e., whether subjects face the same set of valuations in each period or whether they get
new valuations in each period.

Table 6 presents the summary statistics of observed behavior along with the theo-
retical predictions for both treatments broken down into the exclusion and no-exclusion
condition.28 The table shows that revenues are lower when the high type vH is excluded
from participation in both EXUP and EXP. While this is in line with the qualitative pre-
diction for EXUP, it is in strong contrast to the prediction for EXP that exclusion increases
revenues relative to no-exclusion. In EXUP, the sum of bids is, on average, 21.55 when all
three bidders participate compared to 13.63 when only the two weaker bidders partici-
pate. The difference in the sum of bids in the two conditions (exclusion and no-exclusion)
is statistically significant according to a Wilcoxon signed-rank test (z = 2.201, p < 0.03,
n = 6). In contrast to the theoretical prediction, in EXP the sum of bids is larger when all
bidders participate in the auction (18.48) than when the high type is excluded (14.02). We
can reject the hypothesis of equal revenues in the two conditions (Wilcoxon signed-rank
test z = 2.201, p < 0.03, n = 6), but not in favor of our alternative hypothesis.

It is apparent that, on average, the sum of bids is always higher than predicted
(overbidding) except in the exclusion condition in EXP. When the high type vH is ex-
cluded, we observe that the sum of bids in EXUP is about 1.2 times higher than predicted,
whereas the sum of bids is about 1.5 times higher than predicted in the no-exclusion con-
dition of both treatments (158% in EXP and 148% in EXUP).

Conducting the same thought experiment as in High30 and High51 in Section 3.1

28Due to a programming mistake we implemented the same valuation for vM and vL in 20 percent of cases
in treatment EXP. Recall that the theory requires vH > vM > vL. Excluding these cases yield qualitatively
the same results and thus we include this data throughout our analysis. Note also that five out of 3,600
individual bids are significantly larger than 55. We exclude the data of the whole bidding group from these
periods throughout our analysis.
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Table 6: Sum of bids in EXP and EXUP

EXUP EXP

no exclusion exclusion no exclusion exclusion
(3 bidders) (2 bidders) (3 bidders) (2 bidders)

avg. sum of bids (observed) 21.55 13.63 18.48 14.02
(11.58) (8.27) (10.88) (8.72)

avg. sum of bid (predicted) 14.60 11.43 11.72 14.27
(2.22) ( 2.24) (2.39) ( 2.63)

minimum bid 0 0 0 0
maximum bid 50 40 55 40
N 284 312 299 300
Notes: Standard deviations in parentheses. We excluded the sum of bids if xi > 55,
as occurred in 5 out of 3600 individual bids.

illustrates again that the larger revenues in the no-exclusion condition in EXP is due to
the behavior of the high type. Using the actual bids of the two weaker bidders and the
theoretical bids of the strongest bidders to calculate the revenues shows that revenues
would be lower than with exclusion in EXP (12.82 vs. 14.02). However, the difference
in revenues is not statistically different (Wilcoxon signed-rank test z = 0.943, p > 0.34,
n = 6).

Intuitively, one would expect that exclusion is more likely profitable the more het-
erogeneous the group is. However, our results suggest that exclusion is not profitable
for a wide range of valuations in EXP, because of the prevalent overbidding in the no-
exclusion condition. When all three bidders participate in the auction, the sum of bids is
in about 80 percent of cases higher than the predicted sum of bids. While in these cases
the sum of bids is on average 22.23, it is, on average, only 6.51 when no overbidding oc-
curred. Overbidding occurs in particular when the valuation of the strongest bidder is
high. In groups with overbidding the valuations are on average vH = 36.3 and vM = 15.7
compared to vH = 33.3 and vM = 16.1 in groups where the sum of bids that are equal or
lower than predicted. Accordingly, there is a significant and positive correlation between
overbidding and the distance in valuations between the strongest and second-strongest
bidder (ρ = 0.17, p < 0.01). That is, the stronger the high type, the more likely over-
bidding takes place. This suggests that the exclusion principle may be profitable if the
strongest bidder is not too strong.

In summary, these results corroborate the findings from the main treatment that the
exclusion principle is not profitable and, in addition, indicates that this is likely more often
the case when the strongest bidder is far more superior to the other bidders. Next, we
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Table 7: Summary statistics of individual bids of bidder types

EXP EXUP

bidder type High Medium Low High Medium Low

avg. bid 13.56 2.24 2.67 15.84 3.50 2.18
no exclusion (6.43) (5.30) (6.81) (5.87) (7.66) (6.29)

avg. predicted bid 7.92 3.81 0.00 8.98 5.58 0.00
no exclusion (1.19) (1.42) (0.00) (0.84) (1.70) (0.00)

avg. bid - 8.40 5.63 - 9.69 3.94
exclusion (6.06) (6.47) (5.55) (5.77)

avg. predicted bid - 7.43 6.84 - 6.54 4.88
exclusion (1.26) (1.39) (0.96) (1.30)

minimum bid 0 0 0 0 0 0
maximum bid 47 40 40 32 50 50
Notes: Standard deviations in parentheses. We excluded bids xi > 55.
This was the case in 5 out of 3,600 individual bids.

look at individual bidding behavior. Table 7 provides a first overview of the average bids
of each bidder type in the no-exclusion condition (top panel) and the exclusion condition
(bottom panel) for each treatment.

We find that in both treatments high types bid, on average, almost twice as much
as predicted by theory if they participate in the auction (Table 7, top panel). The difference
between the actual bids and predicted bids is statistically significant in both treatments
(Wilcoxon signed-rank test, z = 2.201, p < 0.03, n = 6 for both treatments). As a con-
sequence, the strongest bidders forgo a substantial part of their rent in order to increase
their chance of winning. In particular, they win about 82% of the auctions in both treat-
ments, which is about 10 percentage points more often than predicted. But they only earn
about 81 (74) percent of the expected profits in EXP (EXUP).29

Weaker types often drop out of the bidding process in the no-exclusion condition
(discouragement effect). For example, medium types abstain from bidding (placing a zero
bid) in 64 percent of cases in EXP and EXUP. On the other hand, low types who should
never place a positive bid in the no-exclusion condition, place zero bids in only 71 percent
of cases. Accordingly, we observe on average strictly positive bids of low types (2.67 and
2.18, see Table 7) and similar bids of the medium types (2.24 and 3.50).

We now focus on the behavior of the strongest bidder in a bidding group, which is
either the bidder with vH in the no-exclusion condition or the bidder with second-highest

29Subjects earn 82 (90) percent of the expected profits in EXP (EXUP) when they place a bid in the interval
(0, v2].
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Figure 3: Distribution of cumulative bids relative to the second highest valuation in EXP and
EXUP.

valuation vM in the exclusion condition. Similar to our findings in the main treatments,
we observe behavior that is completely distinct from the theoretical prediction. Figure
3 shows on the left-hand side the cumulative distribution of the bids of high types xH

relative to the valuation of the medium type vM (no-exclusion condition) and on the right-
hand side the bids of the medium type xM relative to the valuation of the low type vL

(exclusion condition).30 The figure also shows the theoretical benchmark for the strongest
bidder (45-degree line).

It is apparent that in the no-exclusion condition of both EXP and EXUP (Figure 3,
left-hand panel) almost two-thirds of the high types’ bids (64 percent) are equal or above
the valuation of the medium type, i.e., they apply a “safe” bidding strategy. The same
behavioral regularity can be observed for medium types in the exclusion condition, who
use the safe strategy, too. About 32 percent of medium types in EXP and about 48 percent
of medium types in EXUP choose the safe strategy when they are the strongest bidder.
The difference in using the safe strategy in EXP and EXUP is not statistically significant
(Mann-Whitney test z = 1.281, p > 0.20). However, the difference in the fraction of
the safe strategy between high and medium types is statistically significant in both EXP
(Wilcoxon signed-rank test z = 2.201, p < 0.03) and EXUP (Wilcoxon signed-rank test
z = 1.992, p < 0.047).

30Note that the predicted bid of the strongest bidder (either the high or medium type) depends on the
valuation of the second-strongest bidder v2 (either the medium or low type) and is uniformly distributed
over the interval [0, v2]. Since v2 varies in each period, we transform the distribution such that the support
is independent of v2 in order to draw the cumulative distribution function (cdf) of the observed bids: the
strongest bidder should never bid more than v2 and thus the maximum ratio of her bid relative to v2 is
one. All bids lower than v2 are chosen with equal probability. This implies that the strongest bidder’s bid
relative to v2 is uniformly distributed over the unit interval: (x1/v2) ∼ Uni[0, 1].
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Table 8: Regression: Choice of the safe strategy

Dependent variable: Safe strategy of the strongest bidder.

(1) (1) (2) (3)
(high/med type) (high/med type) (high/med type) (high/med type)

Three bidders (D) 0.231*** −0.011 0.020
(0.040) (0.061) (0.062)

Ten period blocks −0.008 −0.008 −0.008 −0.028*
(0.014) (0.014) (0.011) (0.017)

Distance in valuation 0.032*** 0.032*** 0.037**
(0.006) (0.006) (0.015)

Squared distance −0.001*** −0.001***
(0.000) (0.000)

Risk averse (D) 0.097
(0.103)

Avg. bid as med/low type 0.019**
(0.009)

N 1198 1198 888 141
Pseudo R2 0.04 0.07 0.09 0.24
Notes: * p < 0.10, ** p < 0.05, *** p < 0.01
Probit regressions (average marginal effects) with standard errors clustered on matching group
level (in parentheses). The dummy variable “Three bidders” equals one in the no-exclusion
condition. The variable “Ten period blocks” divides the 50 periods in five 10 period blocks and
captures time effects. “Distance in valuations” and “Squared distance” denotes the difference
between the strongest and the second strongest valuation and the squared difference, respec-
tively. “Risk averse” is a dummy variable which equals one if a subject prefers safe options
smaller or equal to the expected value of the lottery. The variable “Avg. bid as med/low type
in period 1-5” captures subjects’ own behavior as a weak type in the first five periods. (D)
denotes dummy variable.

Table 8 presents results from probit regressions with safe bidding as dependent
variable. This variable equals one if the strongest bidder has chosen a bid that is at least
as high as the respective second-highest valuation, i.e., in the no-exclusion condition safe
equals one, if xH ≥ vM, and in the exclusion condition safe is one if xM ≥ vL. Note also
that we pool the data across treatments, since we observe similar behavioral patterns in
both treatments.

In column (1) we include a dummy variable “Three bidders,” which captures the
effect of facing two opponents versus one opponent. The coefficient estimate confirms
the earlier result that the use of the safe strategy is more prevalent in three bidder groups,
i.e., when high types participate in the auction. However, this effect does not persist if we
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include variables to capture the differences in valuation of the strongest and the second
strongest bidder. The variable “Distance in valuation” is (vH − vM) for the high type
and (vM − vL) for the medium type in the exclusion condition. The variable “Squared
distance in valuation” is defined accordingly. Column (2) shows a positive and significant
effect for the distance in the valuations and a small negative and significant effect for the
squared distance. This not only indicates that with an increasing distance in valuations
bidders are more likely to choose the safe strategy, but also that this effect diminishes
after a certain point. A one-point higher difference in valuations is associated with a 3
percentage point increase in the likelihood of playing safe. In column (3) we additionally
control for risk aversion by including a dummy variable which equals one if a subject
prefers safe options that are smaller or equal to the expected value of the lottery in the
lottery task. Keeping in mind that our control variable is plagued by a measurement error,
the coefficient for risk aversion indicates that risk-averse subjects are more likely to play
the safe strategy, but it is not significant. For all three specifications we find no evidence
of a time trend. Overall, the regression results corroborate the earlier findings of EX and
EXUP as well as of the main treatments.

In the last column we examine how safe behavior is driven by the bidding behavior
of the other (weak) types. Note that in our setup subjects only learn the winning bid
and, thus, they only get information about others’ bidding behavior in case they lose
the auction. However, it is likely that the strongest bidders draw inferences about the
behavior of their competitors from their own behavior as a weak type. In order to look
at this potential channel, we examine how own bidding behavior as a medium or low
type in early periods affects subjects’ inclination to play the safe strategy as a strongest
bidder in later periods. Note that we concentrate here only on those subjects who had no
experience as the strongest bidder in the first five periods, which results in a significantly
smaller sample.31 The variable of interest here is “Avg. bid as med/low type,”which
indicates a positive and significant impact of own bidding behavior on playing the safe
strategy. This suggests that early experience in the role of the weak types has an influence
on playing safe as the strongest bidder in later periods. If we assume that subjects project
their experience as a weak type onto others, this result provides support for the conjecture
that, in part, the behavior of the weak types triggers the safe strategy of the strongest
bidders.

To sum up, we have presented evidence that the exclusion principle is not predictive

31The choice of five periods reflects the trade-off between the number of observation (subjects) and a
sufficient time to experience the different bidder roles. For example, extending the initial periods to 10
reduces the observations from 141 to 35.
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for a wide range of parameter values and thus corroborates our findings from the main
treatments. As in the main treatments this failure can be traced backed to the behavior
of high types who predominantly use a strategy that ensures a secure profit. Moreover
the use of this strategy is positively associated with the valuation of the high types, i.e.,
the larger the distance in valuations between the strongest and second-strongest bidder,
the more likely it is that we observe the use of the safe strategy. Finally, our results from
EXP and EXUP illustrate that how we assign valuations to subjects has little impact on
our qualitative results.
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C Appendix – For Online Publication

C.1 Instructions for the All-Pay Auction

General

The second part of the experiment consists of 50 periods in each of which you have to
make a decision. Through your decision you can earn points. These points constitute
your income which is exchanged to euros according to the conversion rate stated below.
Your earnings from the first part of the experiment and from this part will be paid in cash
to you at the end of the session.

In each of the 50 periods you will be randomly matched with two other partici-
pants to form a group. From now on we will label these two participants as group mem-
bers. You and the other group members will not learn each other’s identity at any point
of time. In the following we explain the different decisions you have to make and the
procedure of the experiment.

Decision in one period

In each period the computer randomly generates and assigns a number to you and the
other group members. One of these numbers will be drawn from the set {15, 16, . . . ., 55}
and the other two numbers from the set {11, 12, . . . .., 20}. In the beginning of each period
you will learn your number and the two numbers of the other group members. In the
remainder, we will refer to these numbers as “random numbers.”

Before you make your decision, the computer randomly decides with a probability
of 50% whether the group member with the highest random number is excluded from
this period. This means that on average in five out of 10 cases the group member with the
highest random number actively participates in that period. Also, in five out of 10 cases
the group member with the highest random number is excluded and will not receive an
income in that period. If it is not you who has the highest random number in a period
you will definitely participate. You will learn in each period whether the group member
with the highest random number is being excluded or not.

Every participating group member has to choose an arbitrary number. The num-
ber can have up to three decimal places and has to be non-negative (zero is possible). All
group member will choose their number simultaneously. We denote this number “deci-
sion number.”

Calculation of your income in one period

Your income depends on your decision number, as well as the decision number of the
other group members and your random number.

After the decisions of all group members have been made, the computer compares
and ranks the three decision numbers.
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• If your decision number is the highest number, you earn your random number mi-
nus your decision number in this period.

period income = random number – decision number

• If your decision number is not the highest number, you earn zero minus your deci-
sion number in this period.

period income = 0 – decision number

In case of a tie, the highest number is determined randomly.
Please note: The decision number you have chosen will be deducted from your period in-

come independent of the rank of your decision number, i.e., your income will in any case be reduced
by your decision number.

If you choose a high decision number, you increase the probability that your deci-
sion number is the highest. But a high decision number also reduces your income, since
a higher number is deducted from your random number. If your decision number is not
the highest, your income will also be reduced by your decision number. At the end of a
period you will learn your income in this period. If your decision number was not the
highest, you additionally learn the highest decision number. If your decision number was
the highest number you will only learn your income in this period.

Example for calculation of the income in one period

Consider the following situation:
Your random number is 28 and you learn the random of the other group members.

The computer decides that all group members will participate in this period. You choose
16 as your decision number.

a) If you have the highest decision number, you will earn your “random number”
minus your decision number, i.e., your income in this period is 28 – 16 = 12

b) If your decision number is not the highest decision number, you will earn zero mi-
nus your decision number, i.e., your income in this period is 0 – 16 = -16

Please note, that your income depends on your random number, your decision
number, and the decision numbers of the other two group members.

Consider now the following situation:
Your “random number” is 28 and you learn the random of the other group mem-

bers. You find out that your decision number is not the highest number in the group.
Thus, you participate in any case in this period. The computer decides that the group
members with the highest “random number” will be excluded in this period. You choose
16 as your decision number.

a) If you have the highest decision number, you will earn your “random number”
minus your decision number, i.e., your income in this period is 28 – 16 = 12
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b) If your decision number is not the highest decision number, you will earn zero mi-
nus your decision number, i.e., your income in this period is 0 – 16 = -16

Please note, that your income depends on your random number, your decision
number, and the decision numbers of the other two group members.

Consider now the following situation:
Your “random number” is 28 and you learn the random of the other group mem-

bers. You find out that your decision number is the highest number in the group. The
computer decides that the group member with the highest random number will be ex-
cluded in this period. For you, that means this period is finished and you will not get an
income in this period.

After the first period, we repeat this procedure in period 2, period 3, through pe-
riod 50. In each of the 50 periods you will be randomly matched with two other partic-
ipants. You are assigned a random number and will learn the random numbers of the
other two group members. Then the computer will decide whether the group member
with the highest random number will participate in this period. All participating group
members simultaneously choose their decision number and learn their income at the end
of the period.

Calculation of the total income of the second part of the experiment

In the beginning you will receive a lump-sum payment of 100 points. At the end of the
experiment the computer randomly draws 10 periods which determine your income. The
points you earned in this period are then added up.

Your total income = 100 + sum of points in 10 randomly drawn periods
Your total income will be converted into euros at a rate of 10 points for one euro.

Trial period

Before we begin, we ask you to participate in a trial period that is not relevant for your
earnings.

Quiz for the all-pay auction

Please answer the following questions and mark or fill in the correct answers.

1. Suppose your random number is 19 and your decision number is 12. Your decision
number is the highest in your group. Your income in this period is:

(a) 19

(b) 12

(c) 7

(d) -12
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2. Suppose your random number is 15 and your decision number is 6. Your decision
number is not the highest in your group. Your income in this period is:

(a) 9

(b) – 6

(c) – 9

(d) – 15

3. Suppose your random number is 19 and your decision number is 12. All three group
members participate in this period.

(a) If your decision number is the highest in your group, you get points mi-
nus points. Your income in points in this period is .

(b) If your decision number is the second highest in your group, you get
points minus points. Your income in points in this period is .

4. What is your income in 3a) and 3b), when the group member with the highest “ran-
dom number” is excluded and you participate in this period?

(a) Income in situation 3a:

(b) Income in situation 3b:

5. In each period you will be randomly matched with two other participants.

(a) correct

(b) wrong

6. If you participate in a period, is the decision number deducted from your income
independent of the decision numbers of the other group members?

(a) Yes

(b) No

7. The probability of an exclusion of the group member with the highest random num-
ber in a period is 30%.

(a) correct

(b) wrong

8. A group member with the second or the third highest random number is not ex-
cluded in any period.

(a) correct

(b) wrong
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9. In case two or more decision numbers are the highest number, the highest number
is randomly determined.

(a) correct

(b) wrong
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